Successive developmental stages of representative early and late juvenile, transition, and adult maize leaves were compared using machine-learning-aided analyses of gene expression patterns to characterize vegetative phase change (VPC), including identification of the timing of this developmental transition in maize. We used t-SNE to organize 32 leaf samples into 9 groups with similar patterns of gene expression. oposSOM yielded clusters of co-expressed genes from key developmental stages. TO-GCN supported a sequence of events in maize in which germination-associated ROS triggers a JA response, both relieving oxidative stress and inducing miR156 production, which in turn spurs juvenility. Patterns of expression of MIR395, which regulates sulfur assimilation, led to the hypothesis that phytosulfokine, a sulfated peptide, is involved in the transition to adult patterns of differentiation.
Read full abstract