Abstract

Plastics are associated with a worldwide pollution crisis, with strong negative impacts on both terrestrial and aquatic ecosystems. In marine environments, various organisms are colonizing plastic debris, but few studies have focused on fungal communities despite their non-trivial ecological roles in the marine environment. In this study, different types of plastics (biodegradable and conventional) immersed in marine natural environments and under laboratory controlled settings were collected after long-term colonization. Using a metabarcoding approach targeting two genetic markers, namely, the ITS2 region and the V4 hypervariable region of the 18S rRNA gene, we highlighted that fungal communities associated with plastic polymers were distinct from those found in the surrounding seawater. They also differed significantly between sampling locations and the nature of immersed polymers, indicating that fungal colonization was impacted by the sites and types of plastics, with clear dissimilarities between conventional and biodegradable polymers. Specifically for the conventional PVC polymer (Polyvinyl chloride), we also observed the successive stages of biofilm development and maturation after long-term immersion in seawater. A noticeable change in the fungal communities was observed around 30–40 days in natural settings, suggesting a colonization dynamic likely associated with a transition from biofilm formation to distinct communities likely associated with biofouling. Overall, this study strengthens the idea that the fungal kingdom is an integrated part of the “plastisphere”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.