DO SUCCESSIVE BIFURCATIONS IN HAMILTO1NIA1N SYSTEMS ETC. 4 ~ consider the fami ly of per iodic orbits (3) q~ = 2~q~, for different values of h. Fo r small values of h this fami ly is stable. A t a par t icu lar va lue h = h 1 (table I) a new fami ly of simple periodic orbits bifurcates f rom i t ; the fami ly (3) becomes unstable for h larger t h a n hx, while the new fami ly is stable. As h increases beyond a TABLE I. -Bifurcations o] the straight-line solutions o] Hamiltonian (2). 1 0.111 361 163 61 9.382 16 0.115 289 767 88 9.542 57 2 0.123 546 301 252 9.25635 O. 123 982 430 124 9.266 78 3 0.124 842 951 250 9.226 57 0.124 890 191 665 9.227 05 4 0.124 982 978 639 9.221 48 0.124 988 099 306 9.220 69 5 0.124 998 154 162 9.220 75 0.124 998 709 459 9.218 40 6 0.124 999 799 816 996 9.220 47 0.124 999 860 038 637 9.220 84 7 0.124 999 978 289 277 9.221 97 0.124 999 984 821 187 9.218 49 8 0.124 999 997 645 762 0.124 999 998 353 438 va lue h = hi (> hi) the fami ly (3) becomes again stable and a new uns table fami ly appears for h > hi. The fami ly (3) becomes again unstable at h = h~ (> hi) etc. There is an inf ini ty of successive t ransi t ions f rom stabi l i ty to ins tabi l i ty at hi, h2, ha ... and f rom ins tabi l i ty to s tabi l i ty at hi, h~, h~, ... such tha t (4) h i c~ is the escape energy h~ = 0.125. I n the fol lowing we define the va lue h ~ h k (5) a~ = h ~ h~+l and a similar va lue 0rl~ The values of hk, hl, 6k, (5~ are g iven in table I. The error of the numbers g iven is at most about one in the last digit . W e notice tha t the b i furcat ion rat ios O k, Of t end to the number 9.22. The accuracy is no t so good as in de te rmina t ions of s imilar rat ios g iven by o ther authors. However , i t is obvious t h a t the difference f rom the (~ universal ~> n u m b e r for conservat ive systems = 8.7210972 is significant, a l though bo th numbers are of the same order. (6) R . C . CHUROttlLL, G. PEOELZI a n d D. L . ROD : i n Stochastic Bshaviour in Classical and Quantum Hamiltonian Sysiems, e d i t e d b y G. CASATI a n d J . FORD (Ber l in , 1979) , p . 76.