Abstract

Plane nonlinear dynamo waves can be described by a sixth order system of nonlinear ordinary differential equations which is a complex generalization of the Lorenz system. In the regime of interest for modelling magnetic activity in stars there is a sequence of bifurcations, ending in chaos, as a stability parameter D (the dynamo number) is increased. We show that solutions undergo three successive Hopf bifurcations, followed by a transition to chaos. The system possesses a symmetry and can therefore be reduced to a fifth order system, with trajectories that lie on a 2-torus after the third bifurcation. As D is then increased, frequency locking occurs, followed by a sequence of period-doubling bifurcations that leads to chaos. This behaviour is probably caused by the Shil'nikov mechanism, with a (conjectured) homoclinic orbit when D is infinite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.