Transglucosylation of resveratrol by the Q345F variant of sucrose phosphorylase from Bifidobacterium adolescentis (BaSP) was extensively studied during the last decade. Indeed, Q345F is able to catalyze the synthesis of resveratrol-3-O-⍺-D-glucoside (RES-3) with yield up to 97% using a cost-effective glucosyl donor, sucrose (Kraus et al., Chemical Communications, 53(90), 12182–12184 (2017)). Despite the fact that two further products were detectable in low amounts after glucoside synthesis, they were never identified. Here, we isolated and fully characterized one of those two minor products: resveratrol-3,4′-O-⍺-D-diglucoside (RES-3,4′). This original compound had never been described before. Using bioinformatics models, we successfully explained the formation of this diglucosylated product. Indeed, with RES-3 as acceptor substrate, Q345F is able to transfer a glucosyl moiety in position 4′-OH, what had been reported as impossible in the literature. The low yield observed is due to the steric hindrance into the catalytic site between RES-3 and residues Tyr132 and Tyr344. Nevertheless, the substrate orientation in the active site is favored by stabilizing interactions. Ring A of RES-3 bearing the diol moiety is stabilized by hydrogen bonds with residues Asp50, Arg135, Asn347 and Arg399. Hydroxyl group OH-4′ shares hydrogen bonds with the catalytic residues Asp192 and Glu232. Multiple hydrophobic contacts complete the stabilization of the substrate to favor the glucosylation at position 4′. Understanding of the mechanisms allowing the glucosylation at position 4′ of resveratrol will help the development of enzymatic tools to target and control the enzymatic synthesis of original ⍺-glucosylated polyphenols with high added value and better biodisponibility.
Read full abstract