During the growth of a single-crystal diamond by MPCVD, polycrystalline diamonds are prone to grow in the edge regions. This substantially reduces the usable area of the grown diamond film. In addition, the inhomogeneous distribution of internal stress causes diamond to crack during continuous growth. In recent years, a series of experimental studies have been carried out to solve these problems and some achievements have been obtained. However, in order to understand fundamentally the growth mechanism of diamond, the relationship between growth quality and various influencing factors still needs to be quantitatively studied through integrated simulations and experiments. Electron number density and substrate temperature are important factors affecting diamond crystallization quality. In this paper, the growth conditions of the diamond were simulated and analyzed. Simulation results were compared with the experimental results. This evidences that the surface temperature distribution is relatively homogeneous, and that the significant electron number density gradient in the axial direction is the main reason for the formation of polycrystals in the edge regions. Therefore, substrate holders with different cavity depths were designed and the substrates grew in the same temperature range. The surface morphologies, crystalline qualities, and internal stress distributions of the grown diamonds were measured, and it was found that the quality of growth increased first and then decreased with the depth of the cavity, while the growth rate decreased with increasing the latter. These results are in good agreement with the simulation results. Finally, suggestions on the selection of the substrate holder for film growth with different thicknesses are proposed. Lors de la croissance d'un monocristal de diamant par MPCVD, des diamants polycristallins ont tendance à pousser sur les bords. Ceci réduit considérablement la surface utilisable du film de diamant obtenu. De plus, la distribution non homogène des contraintes internes provoque la fissuration du diamant au cours de sa croissance. Ces dernières années, plusieurs études expérimentales ont été menées pour résoudre ces problèmes, et des résultats ont été obtenus. Cependant, pour comprendre fondamentalement le mécanisme de croissance du diamant, la relation entre la qualité de la croissance et divers facteurs l'influençant doit encore être étudiée quantitativement au moyen de simulations et d'expériences intégrées. La densité du nombre d'électrons et la température du substrat sont des facteurs importants affectant la qualité de la cristallisation du diamant. Dans cet article, les conditions de croissance du diamant ont été simulées et analysées. Les résultats de la simulation ont été comparés aux résultats expérimentaux. Ceci montre que la distribution de la température de surface est relativement homogène et que le gradient significatif de densité numérique d'électrons dans la direction axiale est la raison principale de la formation de polycristaux sur les bords. Par conséquent, des supports de substrat avec des profondeurs de cavité différentes ont été conçus, et les substrats se sont développés dans la même plage de température. Les morphologies de surface, les qualités cristallines et la distribution des contraintes internes des diamants cultivés ont été mesurées, et on a constaté que la qualité de la croissance augmentait d'abord, puis diminuait avec la profondeur de la cavité, tandis que le taux de croissance diminuait avec l'augmentation de cette dernière. Ces résultats concordent bien avec les résultats de la simulation. Enfin, des suggestions quant au choix du support de substrat pour la croissance de films de différentes épaisseurs sont proposées.
Read full abstract