In the present paper, the sloshing flow in a cuboid tank forced to oscillate horizontally is investigated with both experimental and numerical approaches. The filling depth chosen is $h/L=0.35$ (with h the water depth and L the tank height), which is close to the critical depth. According to Tadjbakhsh & Keller (J. Fluid Mech., vol. 8, issue 3, 1960, pp. 442–451), as the depth passes through this critical value the response of the resonant sloshing dynamics changes from ‘hard spring’ to ‘soft spring’. The experimental tank has a thickness of $0.1L$ , reducing three-dimensional effects. High-resolution digital camera and capacitance wave probes are used for time recording of the surface elevation. By varying the oscillation period and the amplitude of the motion imposed on the tank, different scenarios are identified in terms of free-surface evolution. Periodic and quasi-periodic regimes are found in most of the frequencies analysed but, among these, sub-harmonic regimes are also identified. Chaotic energetic regimes are found with motions of greater amplitude. Typical tools of dynamical systems, such as Fourier spectra and phase maps, are used for the regime identification, while the Hilbert–Huang transform is used for further insight into doubling-frequency and tripling-period bifurcations. For the numerical investigation, an advanced and well-established smoothed particle hydrodynamics method is used to aid the understanding of the physical phenomena involved and to extend the range of frequencies investigated experimentally.