On the basis of recent advances in molecular biology and statistical genetics, it has become possible to search for chromosome regions that contain genes predisposing to hypertension and to directly link specific mutations on candidate genes to hypertension. As the human genome has been extensively mapped, highly informative, polymorphic markers are available, which can be used to detect genes in their proximity with 'hypertensinogenic' alleles. Some of these markers have been shown to be tightly linked to the genes of the renin-angiotensin system. Furthermore, the coding and regulatory regions of the genes encoding for renin, ACE, angiotensinogen and the AT1 receptor have been partially characterized. This provides a basis for further definition of specific polymorphisms within these genes that are of functional importance and that can be used to examine their contribution to the inheritance of primary hypertension. The first studies of these links have already emerged and have been reviewed in this article. Several problems arise in performing such linkage studies in human primary hypertension, however. It is difficult to define the genetic background of heterogeneous, multigenetic and multifactorial diseases such as human hypertension. Extensive studies of population genetics, including the analysis of large numbers of generations and controlled breeding experiments, cannot be performed, for obvious reasons. Blood pressure is not a convenient study trait, because it exhibits great intraindividual variance and also because of the relatively low reliability of just a few indirect measurements obtained under loosely controlled environmental conditions. Twenty-four-hour ambulatory blood pressure measurements may improve such investigations in the near future. Ravogli et al (1990) reported that the 24-hour ambulatory systolic blood pressure is higher in normotensive subjects of hypertensive parents than in normotensive subjects of normotensive parents--a finding that had not been previously reported using the conventional method of measurement. Hypertension as a trait per se is also problematic: its classification (above 140/90 mmHg) is purely artefactual, and its aetiology is highly heterogeneous. Thus, we have to keep in mind that even strong gene effects, if present in only a small subgroup of hypertensives, may not be detected in these studies. Attempts are being made to strengthen the analysis by characterizing physiologically distinct subgroups. In addition, the investigation of intermediate phenotypes, such as plasma parameters, which are more reliable and less subject to variations, may be helpful.(ABSTRACT TRUNCATED AT 400 WORDS)
Read full abstract