Erythropoietin (EPO) is pivotal in regulating red blood cell (erythrocyte) concentrations and is primarily synthesized in the kidney. Recent research has unveiled a possible link between elevated circulating concentrations of ketone bodies (KB) and circulating EPO concentrations; however, it is not known whether nutritionally induced endogenous ketogenesis can be a stimulus to induce EPO in humans. Therefore, this study aimed to assess whether acute and chronic intake of medium-chain fatty acid-containing triacylglycerol (MCT), which rapidly enhances endogenous circulating KB, would elevate circulating EPO concentrations in humans, as indicated by prior work with exogenous KB administration. The study followed a crossover design involving 16 young men undergoing two 8-day MCT or energy-matched long-chain fatty acid-containing triacylglycerol (LCT) interventions in a randomized order. Five-hour test days were performed before and after each intervention, in which circulating KB and EPO concentrations as well as hematological parameters were assessed. Acute intake of MCT yielded a 222% sustained 5-h elevation in KB concentrations compared with LCT-with notable peak values of 0.7 ± 0.1 mmol·L-1 (312% above basal values). Remarkably, within just 8 days of daily MCT intake an impressive 38% increase in basal, fasting plasma EPO concentrations (7.19 ± 1.14 to 9.91 ± 1.25 mIU·mL-1) was demonstrated. In conclusion, this study unveils a novel physiological stimulus of circulating EPO concentrations in humans, potentially offering a new dietary approach to counter anemia in cardiovascular diseases.NEW & NOTEWORTHY This study is the first to assess the effects of nutritionally induced ketogenesis by acute and subchronic intake of medium-chain fatty acids on plasma erythropoietin concentrations. Medium-chain fatty acid intake increases postprandial ketone body concentrations and within only 8 days of daily intake substantially enhances basal plasma erythropoietin concentrations in young men. We therefore reveal a dietary stimulus of endogenous circulating erythropoietin concentrations in humans, with the potential to counter anemia in cardiovascular diseases.
Read full abstract