Enzyme-powered synthetic colloidal motors hold promising potential for in vivo medical applications because of their unique features such as self-propulsion, sub-micrometer size, fuel bioavailability, and structural and functional versatility. However, the key parameters influencing the propulsion efficiency of enzyme-powered colloidal motors still remain unclear. Here, we report the effect of the neck length of urease-powered pentosan flask-like colloidal motors on their kinematic behavior resembling the role of bacterial flagella. The sub-micrometer-sized and streamlined pentosan flask-like colloidal motors with variable neck lengths are synthesized through a facile interfacial dynamic assembly and polymerization strategy. The urease molecules are loaded through vacuum infusion technology and thus the urease-triggered catalytic reaction can propel the pentosan flask-like colloidal motors to move autonomously in the urea solution. The self-propelled speed of these pentosan flask-like colloidal motors significantly increases with the elongating neck lengths. The mechanism of the relationship between the neck length and self-propelled motion is that a longer neck can provide a larger self-propelled force due to the larger force area and stabilize the rotation because of the increased rotational friction. This research can provide guidance for the design of biomedical colloidal motors.
Read full abstract