Abstract

Biologically inspired aromatic peptide-based materials are gaining increasing interest as novel charge transport materials for bioelectronics due to their remarkable electrical response and inherent biocompatibility. In this work, the electrochemical response of ten aromatic amino acids and eleven aromatic peptides has been evaluated to assess the potential of incorporating peptides into electrochemical sensors not as biorecognition elements but as biocompatible electronic materials. While the electrochemical response of amino acids is null in all cases, the hexapeptide of phenylalanine (Phe) capped with eight polyethylene glycol units at the N-terminus and, especially, the cyclic dipeptide formed by two dehydro-phenylalanine residues (cyclo(ΔPhe2)), which organize in fibrillary self-assembled structures of nano- and submicrometric size, respectively, are the most electroactive peptides. Electrodes to electrochemically detect the oxidation of dopamine have been prepared using a plasma-activated polyethylene terephthalate glycol substrate covered with a poly(3,4-ethylenedioxythiophene) layer and a peptide coating deposited at the surface. The highest analytical sensitivity and the lowest limits of detection and quantifications have been obtained for the electrode coated with cyclo(ΔPhe2), which shows much better results than that without peptide. These results, on the one hand, confirm the significant role of electron transport through π-stacking interactions in the electrochemical response of peptides and, on the other hand, demonstrate that peptides can be directly used as electronic materials rather than as simple recognition elements in electrochemical biosensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.