Abstract
Hydrangea-like nickel/nickel-based compounds decorated hollow carbon shells were synthesized through low-temperature calcination and a facile electrochemical oxidation process. This three-dimensional hollow hierarchical structure ensures intimate contact between the electrically conductive nickel (Ni) substrate and uniformly distributed electrochemically active nickel-based compounds. This hierarchical structure offers abundant active sites and accessible pathways, maximizing energy storage, particularly during rapid charge–discharge cycles. With 30 min of electrochemical oxidation, the optimized Ni-compound-based electrode exhibits a specific capacity of 643 C g−1 at 1 A/g. When assembled into a nickel-zinc battery cell with a zinc foil anode, the cell demonstrates swift current responses, with full capacity recovery even after a twentyfold increase in current density, followed by a return to 1 A/g. Density functional theory computations reveal that the electrochemical oxidation, conducted for an optimized duration, results in partial oxidation of Ni(OH)2, reducing the surface adsorption energy of OH− from the electrolyte and improving charge storage capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.