Finsler geometry is a natural generalization of (pseudo-)Riemannian geometry, where the line element is not the square root of a quadratic form but a more general homogeneous function. Parameterizing this in terms of symmetric tensors suggests a possible interpretation in terms of higher-spin fields. We will see here that, at linear level in these fields, the Finsler version of the Ricci tensor leads to the curved-space Fronsdal equation for all spins, plus a Stueckelberg-like coupling. Nonlinear terms can also be systematically analyzed, suggesting a possible interacting structure. No particular choice of spacetime dimension is needed. The Stueckelberg mechanism breaks gauge transformations to a redundancy that does not change the geometry. This creates a serious issue: non-transverse modes are not eliminated, at least for the versions of Finsler dynamics examined in this paper.
Read full abstract