Grand canonical Monte Carlo simulations are used to study phase separation in a simple colloid-polymer model, the so-called Asakura-Oosawa model. To overcome the problem of small acceptance rates of the grand-canonical moves, cluster moves are introduced. Successive umbrella sampling, recently introduced by Virnau and Muller [J. Chem. Phys. 120, 10925 (2004)], is used to access the phase-separated regime. The unmixing binodal and the interfacial tension are measured and compared to theoretical predictions. By means of finite-size scaling, the behavior close to the critical point is also investigated. Close to criticality, we observe substantial deviations from mean-field behavior.