Abstract
We study phase separation in a system of hard-core particles driven by a fluctuating two-dimensional self-affine potential landscape which evolves through Kardar–Parisi–Zhang (KPZ) dynamics. We find that particles tend to cluster together on a length scale which grows in time. The final phase-separated steady state is characterized by an unusual cusp singularity in the scaled correlation function and a broad distribution for the order parameter. Unlike the one-dimensional case studied earlier, the cluster-size distribution is asymmetric between particles and holes, reflecting the broken reflection symmetry of the KPZ dynamics, and has a contribution from an infinite cluster in addition to a power law part. A study of the surface in terms of coarse-grained depth variables helps understand many of these features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.