Formyl phosphate, a putative enzyme-bound intermediate in the reaction catalyzed by formyltetrahydrofolate synthetase (EC 6.3.4.3), was synthesized from formyl fluoride and inorganic phosphate [Jaenicke, L. v., & Koch, J. (1963) Justus Liebigs Ann. Chem. 663, 50-58], and the product was characterized by 31P, 1H, and 13C nuclear magnetic resonance (NMR). Measurement of hydrolysis rates by 31P NMR indicates that formyl phosphate is particularly labile, with a half-life of 48 min in a buffered neutral solution at 20 degrees C. At pH 7, hydrolysis occurs with P-O bond cleavage, as demonstrated by 18O incorporation from H2(18)O into Pi, while at pH 1 and pH 13 hydrolysis occurs with C-O bond cleavage. The substrate activity of formyl phosphate was tested in the reaction catalyzed by formyltetrahydrofolate synthetase isolated from Clostridium cylindrosporum. Formyl phosphate supports the reaction in both the forward and reverse directions. Thus, N10-formyltetrahydrofolate is produced from tetrahydrofolate and formyl phosphate in a reaction mixture that contains enzyme, Mg(II), and ADP, and ATP is produced from formyl phosphate and ADP with enzyme, Mg(II), and tetrahydrofolate present. The requirements for ADP and for tetrahydrofolate as cofactors in these reactions are consistent with previous steady-state kinetic and isotope exchange studies, which demonstrated that all substrate subsites must be occupied prior to catalysis. The k cat values for both the forward and reverse directions, with formyl phosphate as the substrate, are much lower than those for the normal forward and reverse reactions. Kinetic analysis of the formyl phosphate supported reactions indicates that the low steady-state rates observed for the synthetic intermediate are most likely due to the sequential nature of the normal reaction.