Abstract
A new synthetic route to adenosine 5'-([gamma(R)-17O,18O]-gamma-thiotriphosphate) is described which combines chemical methods for introducing the heavy oxygen isotopes and enzymic methods for achieving the enantiospecificity. This material was used as a substrate for the activation of glutamate catalyzed by glutamine synthetase from Salmonella typhimurium. Analysis of the chirality of the [16O,17O,18O]thiophosphate produced showed that the reaction proceeds with inversion of configuration on phosphorus. This result, taken together with the positional isotope exchange studies of Midelfort and Rose [Midelfort, C. F., & Rose, I.A. (1976) J. Biol. Chem. 251, 5881-5887], demonstrates that the activation of glutamate to form gamma-glutamyl phosphate proceeds by a direct "in-line" transfer of the phosphoryl group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.