Biochar has proven effective in the remediation of excess nitrogen from soil and water. Excess nitrogen from agricultural fields ends up in aquatic systems and leads to reduced water quality and the proliferation of invasive species. This study aimed to assess the efficiency of chemically surface-modified biochar produced from invasive Pistia stratiotes L. for the adsorption of inorganic nitrogen (NH4+ and NO3-). Biochar structure was investigated using scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and inductively coupled plasma mass spectrometry. The results from adsorption experiments indicate that NH4+ removal was optimal (0.8-1.3 mg N g-1) at near-neutral pH levels (6.0-7.5), while NO3- removal was optimal (0.4-0.8 mg N g-1) under acidic pH conditions (4.8-6.5) using the modified biochar. These findings highlight the significance of solution pH, biochar morphology, and surface chemistry in influencing the adsorption of NH4+ and NO3-. However, further studies are necessary to assess the potential oxidative transformation of NH4+ to NO3- by biochar, which might have contributed to the reduction in NH4+ in the aqueous phase.