In the process of using structured light technology to obtain indoor point clouds, due to the limited field of view of the device, it is necessary to obtain multiple point clouds of different wall surfaces. Therefore, merging the point cloud is necessary to acquire a complete point cloud. However, due to issues such as the sparse geometric features of the wall point clouds and the high similarity of multiple point clouds, the merging effect of point clouds is poor. In this paper, we leverage artificially enhanced features to improve the accuracy of registration in this scenario. Firstly, we design feature markers and present their layout criteria. Then, the feature information of the marker is extracted based on the Color Signature of Histograms of OrienTations (Color-SHOT) descriptor, and coarse registration is realized through the second-order similarity measure matrix. After that, precise registration is achieved using the Iterative Closest Point (ICP) method based on markers and overlapping areas. Finally, the global error of the point cloud registration is optimized by loop error averaging. Our method enables the high-precision reconstruction of integrated home design scenes lacking significant features at a low cost. The accuracy and validity of the method were verified through comparative experiments.
Read full abstract