Abstract

The precision of digital anthropometry through 3-dimensional (3D) scanning has been established for relatively large, expensive, non-portable systems. The comparative performance of modern mobile applications is unclear. Forty-six adults (age: 23.3 ± 5.3 y; BMI: 24.4 ± 4.1 kg/m2) were assessed in duplicate using: (1) a mobile phone application capturing two individual 2D images, (2) a mobile phone application capturing serial images collected during a subject's complete rotation, (3) a traditional scanner with a time of flight infrared sensor collecting visual data from a subject being rotated on a mechanical turntable, and (4) a commercial measuring booth with structured light technology using 20 infrared depth sensors positioned in the booth. The absolute and relative technical error of measurement (TEM) and intraclass correlation coefficient (ICC) for each method were established. Averaged across circumferences, the absolute TEM, relative TEM, and ICC were (1) 0.9 cm, 1.5%, and 0.975; (2) 0.5 cm, 0.9%, and 0.986; (3) 0.8 cm, 1.5%, and 0.974; and (4) 0.6 cm, 1.1%, and 0.985. For total body volume, these values were (1) 2.2 L, 3.0%, and 0.978; (2) 0.8 L, 1.1%, and 0.997; (3) 0.7 L, 0.9%, and 0.998; and (4) 0.8 L, 1.1%, and 0.996, with segmental volumes demonstrating higher relative errors. A 3D scanning mobile phone application involving full rotation of subjects in front of a smartphone camera exhibited similar reliability to larger, less portable, more expensive 3D scanners. In contrast, larger errors were observed for a mobile scanning application utilizing two 2D images, although the technical errors were acceptable for some applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call