Abstract
Reverse engineering and in particular three-dimensional digitization have become an essential part of the documentation of archaeological findings. 3D scanning produces a high-precision digital reference document. The factors that influence the quality of the 3D scanned data are the scanned object’s surface colour, its glossiness and geometry, and the ambient light during the scanning process. However, the actual equipment and scanning technologies are of primary importance. The current paper presents a qualitative and quantitative comparison between two 3D scanning devices of different technologies; structured light 3D scanning and laser 3D scanning. The benchmark for this comparison is an ancient Roman vase from the city of Thessaloniki, Greece. The object was scanned with every possible setting on each scanner, but only one configuration of settings on each device was selected for the final comparison. The main criterion for the final selection of the two 3D models acquired with the use of the two technologies was the proximity in the number of points and polygons produced for digitally restoring the ancient vase in the best possible way. The results indicate important differences regarding the accuracy of the final digital model. The laser technology produced better accuracy but with a significant cost in scanning time and model data size. On the other hand, the structured light technology achieved the optimal combination of scanning quality and accuracy, along with reduced acquisition time of scan data.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have