The mountainous regions of southwest China are recognized as pivotal centers for the origin and evolution of Osmanthus species. Baoxing Osmanthus (Osmanthus serrulatus Rehder), a rare and endemic species known for its spring blooms, is sparsely distributed within the high altitude evergreen broad-leaved forests surrounding the southwestern Sichuan Basin. However, persistent anthropogenic disturbances and habitat fragmentation have precipitated a significant decline in its natural population size, leading to the erosion of genetic resources. To assess the genetic status of O. serrulatus and formulate effective conservation strategies, we conducted sampling across ten wild populations, totaling 148 individuals in their natural habitats. We employed two cpDNA fragments (matK and trnS-trnG) to elucidate the phylogeographic structure and historical population dynamics. The results revealed low species-level genetic diversity, alongside pronounced regional differentiation among populations (FST = 0.812, p < 0.05) and a notable phylogeographic structure (NST = 0.698 > GST = 0.396, p < 0.05). Notably, genetic variation was predominantly observed among populations (81.23%), with no evidence of recent demographic expansion across the O. serrulatus distribution range. Furthermore, divergence dating indicated a timeline of approximately 4.85 Mya, corresponding to the late Miocene to early Pleistocene. This temporal correlation coincided with localized uplift events in the southwestern mountains and heightened Asian monsoons, suggesting pivotal roles for these factors in shaping the current phylogeographic pattern of O. serrulatus. These findings support the effective conservation of O. serrulatus germplasm and offer insights into the impact of Quaternary climate oscillations on companion species within evergreen broad-leaved forests. They also enhance our understanding of the origin and evolution of these forests in the southwestern mountains, aiding biodiversity conservation efforts in the region.
Read full abstract