Abstract

About 50 years ago, Keyfitz (1971) asked how much further a growing human population would increase if its fertility rate were immediately to be reduced to replacement level and remain there forever. The reason for demographic momentum is an age–structure inertia due to relatively many potential parents because of past high fertility. Although nobody expects such a miraculous reduction in reproductive behavior, a gradual decline in fertility in rapidly growing populations seems inevitable. As any delay in fertility decline to a stationary level leads to an increase in the momentum, it makes sense to think about the timing and the quantum of the reduction in reproduction. More specifically, we consider an intertemporal trade-off between costly pro- and anti-natalistic measures and the demographic momentum at the end of the planning period. This paper uses the McKendrick–von Foerster partial differential equation of age–structured population dynamics to study a sketched problem in a distributed parameter control framework. Among the results obtained by applying an appropriate extension of Pontryagin’s Maximum Principle are the following: (i) monotony of adaptation efforts to net reproduction rate and convex decrease/concave increase (if initial net reproduction rate exceeds 1/is below 1); and (ii) oscillating efforts and reproduction rate if, additionally, the size of the total population does not deviate from a fixed level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.