The confluence of tributaries and the main stream affects riverbed siltation and alters the upstream water–sediment relationships and flow structure of the main stream by adding additional flow. The relationship between these changes and the evolution of river bars, however, is yet to be fully understood. In this study, the areas of the river bars were extracted from Landsat image and analyzed using soft clustering to identify evolutionary patterns of the bars at the confluence of the Fen River (FR) and Yellow River (YR), and to analyze the hydrodynamic mechanism with hydrodynamic modeling. The results show that the spatial and temporal evolution of river bars in the study area over the past 50 years exhibits an evolutionary pattern, which exhibited evident clustering distributions and significant stage-based characteristics. This pertains to the water–sediment relationships as well as hydrodynamic fluctuations. At the confluence of FR and YR, the intensity of fluvial erosion experiences a mean increment of 9.67 %, while the incoming sediment coefficient witnesses a mean reduction of 5.74 %. The position of the confluence point exhibits a close association with the evolutionary characterized of spatial clustering and temporal phasing of the river bars. The river confluence area showcases a complex turbulence structure, wherein alterations in sediment transport capacity occur due to the influence of secondary flow and the topography of the confluence area. Consequently, this impacts the flushing of river sandbars and brings about modifications in siltation. Overall, this study provides the scientific basis for YR sediment management and channel modification in response to changing runoff and sediment conditions.