Abstract

The wind energy sector faces a persistent challenge in developing sustainable solutions for decommissioned Wind Turbine Blades (WTB). This study utilises Lifecycle Assessment (LCA) to evaluate the gate-to-gate carbon footprint of high-profile disposal and recycling methods, aiming to determine optimal strategies for WTB waste treatment in the UK. While this article analyses the UK as a case study, the findings are applicable to, and intended to inform, recycling strategies for WTB waste globally. Long-term sustainability depends heavily on factors like evolving energy grids and changing WTB waste compositions and these must be considered for robust analysis and development strategy recommendations. In the short to medium term, mechanical recycling of mixed WTB waste is sufficient to minimise Global Warming Potential (GWP) due to the scarcity of carbon fibre in WTB waste streams. Beyond 2040, carbon fibre recycling becomes crucial to reduce GWP. The study emphasises the importance of matching WTB sub-structure material compositions with preferred waste treatment options for the lowest overall impact. Future development should focus on the extraction of carbon fibre reinforced polymer (CFRP) structures in WTB waste streams, commercialising large-scale CFRP structure recycling technologies, establishing supply chains, and validating market routes for secondary carbon fibre products. In parallel, scaling up low-impact options, like mechanical recycling, is vital to minimise WTB waste landfilling. Developing viable applications and cost-effective market routes for mechanical recyclates is necessary to displace virgin glass fibres, while optimising upstream recycling processes based on product requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.