To completely understand lithium adsorption, diffusion, and capacity on the surface of phosphorene and, therefore, the prospects of phosphorene as an anode material for high-performance lithium-ion batteries (LIBs), we carried out density-functional-theory calculations and studied the lithium adsorption energy landscape, the lithium diffusion mobility, the lithium intercalation, and the lithium capacity of phosphorene. We also carried out, for the very first time, experimental measurement of the lithium capacity of phosphorene. Our calculations show that the lithium diffusion mobility along the zigzag direction in the valley of phosphorene was about 7 to 11 orders of magnitude faster than that along the other directions, indicating its ultrafast and anisotropic diffusivity. The lithium intercalation in phosphorene was studied by considering various Li n P16 configurations (n = 1–16) including single-side and double-side adsorptions. We found that phosphorene could accommodate up to a ratio of one Li per P atom (i.e. Li16P16). In particular, we found that, even at a high Li concentration (e.g. x = 1 in Li x P), there was no lithium clustering, and the structure of phosphorene (when fractured) is reversible during lithium intercalation. The theoretical value of the lithium capacity for a monolayer phosphorene is predicted to be above 433 mAh g−1, depending on whether Li atoms are adsorbed on the single side or the double side of phosphorene. Our experimental measurement of the lithium capacity for few-layer phosphorene networks shows a reversible stable value of ∼453 mAh g−1 even after 50 cycles. Our results clearly show that phosphorene, compared to graphene and other two-dimensional materials, has great promise as a novel anode material for high-performance LIBs.