Abstract

Economical and highly effective catalysts are crucial to the electrocatalytic hydrogen evolution reaction (HER), and few-layer black phosphorus (phosphorene) is a promising candidate because of the high carrier mobility, large specific surface area, and tunable physicochemical characteristics. However, the HER activity of phosphorene is limited by the weak hydrogen adsorption ability on the basal plane. In this work, optimal active sites are created to modulate the electronic structure of phosphorene to improve the HER activity and the effectiveness is investigated theoretically by density-functional theory calculation and verified experimentally. The edges and defects affect the electronic density of states, and a linear relationship between the HER activity and lowest unoccupied states (εLUS) is discovered. The medium εLUS value corresponds to the suitable hydrogen adsorption strength. Experiments are designed and performed to verify the prediction, and our results show that a smaller phosphorene moiety with more edges and defects exhibits better HER activity and surface doping with metal adatoms improves the catalytic performance. The results suggest that modified phosphorene has large potential in efficient HER and provides a convenient standard to explore ideal electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.