Whilst bottlebrush polymers have been studied in aqueous media for their conjectured role in biolubrication, surface forces and friction mediated by bottlebrush polymers in non-polar media have not been previously reported. Here, small-angle neutron scattering (SANS) showed that a diblock bottlebrush copolymer (oligoethyleneglycol acrylate/ethylhexyl acrylate; OEGA/EHA) formed spherical core–shell aggregates in n-dodecane (a model oil) in the polymer concentration range 0.1–2.0 wt%, with a radius of gyration Rg ∼ 7 nm, comprising 40–65 polymer molecules per aggregate. The surface force apparatus (SFA) measurements revealed purely repulsive forces between surfaces bearing inhomogeneous polymer layers of thickness L ∼ 13–23 nm, attributed to adsorption of a mixture of polymer chains and surface-deformed micelles. Despite the surface inhomogeneity, the polymer layers could mediate effective lubrication, demonstrating superlubricity with the friction coefficient as low as µ ∼ 0.003. The analysis of velocity-dependence of friction using the Eyring model shed light on the mechanism of the frictional process. That is, the friction mediation was consistent with the presence of nanoscopic surface aggregates, with possible contributions from a gel-like network formed by the polymer chains on the surface. These unprecedented results, correlating self-assembled polymer micelle structure with the surface forces and friction the polymer layers mediate, highlight the potential of polymers with the diblock bottlebrush architecture widespread in biological living systems, in tailoring desired surface interactions in non-polar media.
Read full abstract