The advancement of technology in the field of glycemic control has led to the widespread use of continuous glucose monitoring (CGM), which can be nowadays obtained from wearable devices equipped with a minimally invasive sensor, that is, transcutaneous needle type or implantable, and a transmitter that sends information to a receiver or smart device for data storage and display. This work aims to review the currently available software packages and tools for the analysis of CGM data. Based on the purposes of this work, 12 software packages have been identified from the literature, published until December 2021, namely: GlyCulator, EasyGV (Easy Glycemic Variability), CGM-GUIDE© (Continuous Glucose Monitoring Graphical User Interface for Diabetes Evaluation), GVAP (Glycemic Variability Analyzer Program), Tidepool, CGManalyzer, cgmanalysis, GLU, CGMStatsAnalyser, iglu, rGV, and cgmquantify. Comparison of available software packages and tools has been done in terms of main characteristics (i.e., publication year, presence of a graphical user interface, availability, open-source code, number of citations, programming language, supported devices, supported data format and organization of the data structure, documentation, presence of a toy example, video tutorial, data upload and download, measurement-units conversion), preprocessing procedures, data display options, and computed metrics; also, each of the computed metrics has been analyzed in terms of its adherence to the American Diabetes Association (ADA) 2017 international consensus on CGM data analysis and the ADA 2019 international consensus on time in range. Eventually, the agreement between metrics computed by different software and tools has been investigated. Based on such comparison, usability and complexity of data management, as well as the possibility to perform customized or patients-group analyses, have been discussed by highlighting limitations and strengths, also in relation to possible different user categories (i.e., patients, clinicians, researchers). The information provided could be useful to researchers interested in working in the diabetic research field as to clinicians and endocrinologists who need tools capable of handling CGM data effectively.
Read full abstract