Aminoacyl tRNA synthetases ligate tRNAs specifically with their cognate amino acid. These synthetases are among life's earliest proteins, class II tRNA synthetases (cognates A, D, F, G, H, K, N, P, S, and T) presumably preceding class I tRNA synthetases (cognates C, E, I, L, M, Q, R, V, W, and Y). Classification of codons into palindromic (structure XYX), 5'-dominant (YXX), and 3'-dominant (XXY) (Codon Directional Asymmetry [CDA]) shows that class II tRNA synthetases aminoacylate amino acids associated with XXY. Our working hypothesis expects bias for XXY codons in primordial RNAs, such as theoretical minimal RNA rings, designed in silico to mimic life's earliest RNAs. Twenty-five RNA rings have been computed, which code over a minimal length (22 nucleotides) for a start codon, stop codon, and one and only one codon for each of the 20 amino acids, and form stem-loop hairpins preventing degradation; these 25 minimal RNAs are the only ones matching these constraints and they seem homologous to consensus tRNA sequences. This similarity defined candidate RNA ring anticodons and corresponding cognate amino acids. Here, analyses of RNA ring codon contents confirm bias for XXY codons in 13 among 14 RNA rings with unequal XXY and YXX codon numbers. This bias increases with the genetic code integration order of the RNA ring's cognate amino acid across and within tRNA synthetase classes, suggesting that evolutionary processes, and not physicochemical constraints, produced the association between CDA and tRNA synthetase classes. The self-referential hypothesis for genetic code origin, a very complete genetic code evolutionary hypothesis integrating many translational machinery components, predicts best among genetic code evolutionary hypotheses CDA biases in RNA rings. The RNA rings' simple design inadvertently reproduces CDAs predicted by the genetic code's structure, confirming theoretical minimal RNA rings as good proxies for life's earliest RNAs.
Read full abstract