Abstract

The ambush hypothesis speculates that off-frame stop codons increase translational efficiency after ribosomal frameshifts by stopping early frameshifted translation. Some evidences fit this hypothesis: (1) synonymous codon usages increase with their potential contribution to off-frame stops; (2) the genetic code assigns frequent amino acids to codon families contributing to off-frame stops; (3) positive biases for off-frame stops (AT rich) occur despite adverse nucleotide (GC) biases; and (4) mitochondrial off-frame stop codon densities increase with ribosomal structural instability, potential proxy of frameshift frequencies. In this study, analyses of vertebrate mitogenes and tRNA synthetase genes from all superkingdoms and viruses test a new prediction of the ambush hypothesis: sequences immediately downstream of frameshift-inducing homopolymer codons (AAA, CCC, GGG, and TTT) are off-frame stop rich. Codons immediately downstream of homopolymer codons form more than average off-frame stops, biases are stronger than for corresponding upstream distances and for any other group of synonymous codons. Sequences downstream of that high-density region are off-frame stop depleted. This decrease suggests that off-frame stops, combined with suppressor tRNAs regulate translation of overlapping coding sequences. Results show the predictive power of the ambush hypothesis, from macroevolutionary (genetic code structure) to detailed gene sequence anatomy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.