In this work, the effects of four different extraction methods, acid (HCl), alkali (NaOH), enzymes (cellulase/pectinase), and buffer (pH 7.0) on the physicochemical properties and functionalities of burdock pectin were systematically investigated and compared. Buffer extraction gave a low yield (2.8 %) and is therefore limited in its application. The acid treatment hydrolyzed the neutral sidechains and gave a homogalacturonan content of 72.6 %. By contrast, alkali and enzymes preserved the sidechains while degrading the polygalacturonan backbone, creating a rhamnogalacturonan-I dominant structure. The branched structure, low molecular weight, and high degree of methylation (42.3 %) contributed to the interfacial adsorption, emulsifying capacity, and cellular antioxidant activity of the enzyme-extracted product. For the acid-extracted product, the strong intramolecular electrostatic repulsion restricted the formation of a contact interface to prevent coalescence of the emulsion. In addition, they did not have sufficient reducing ends to scavenge free radicals. Although a high branching size (5.0) was adopted, the low degree of methylation (19.5 %) affected the emulsifying capacity of the alkali-extracted products. These results provide useful information for pectic polysaccharides production with tailored properties.