Uncovering the structural origins of the ubiquitous dynamic arrest phenomenon at the glass transition has long been a challenge due to the difficulty in identifying a rational structural representation from a disordered medium. To address this challenge, we propose a novel approach based on unsupervised learning to define a set of structural fingerprints. In this approach, complex local atomic environments, ranging from short to medium range, are captured by the discretized radial distribution function and projected onto a simple two-dimensional space using a neural network-based autoencoder. This two-dimensional space is characterized by two static structural indicators, P1 and P2, providing a comprehensive and user-friendly representation of the mysterious “glassy structure”. By employing Gaussian mixture modeling, the structural space is autonomously divided into three sections, each representing a unique cluster with similar environments. These indicators not only elucidate the glass transition but also allow for the quantitative prediction of activation barriers for local structural excitations. Furthermore, the unsupervised clustering technique can distinguish between the structural features of “hard zones” and “soft zones”, as well as recently proposed superfast “liquid-like” atoms in glass. This unsupervised machine learning approach demonstrates the utility of seemingly agnostic local structure in amorphous materials, offering insights into the long-sought structural origins of the glass transition.