Abstract

The structure of amorphous materials near the interface with an ordered substrate can be affected by various characteristics of the adjoining phases, such as the lattice spacing of the adherent surface, polymer chain length, and adhesive strength. To discern the influence of each of these factors, four FCC metal lattices are examined for three chain lengths of n-alkane and van der Waals interfacial interactions are controlled by adjusting the Lennard-Jones 12-6 potential parameters. The role of interaction strength is investigated for a single chain length and substrate combination. Four nanoconfined systems are also analyzed in terms of their mechanical strength. A strong layering effect is observed near the interface for all systems. The distinctiveness of polymer layering, i.e., the maximum density and spatial extent, exhibits a logarithmic dependence on the interaction strength between polymer and substrate. Congruency with the substrate lattice parameter further enhances this effect. Moreover, the elastic modulus of the alkane phase as a function of layer thickness indicates that the effects of ordering within the structure extend beyond the immediately obvious interfacial region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call