Additive manufacturing has proven to be a very beneficial production technology in the medical and healthcare industries. While existing for over four decades, recent work has seen great improvements in the quality of products; particularly in medical devices such as implants. Improved customization reduced operating time and increased cost-effectiveness associated with Metal AM for these products offers a new value proposition. This paper investigates and evaluates modelling methods for the zygoma bone (human jawbone) and explores the most suitable material and optimum design for this critical biomedical implant. This paper proposes an innovative and efficient pre-process methodology that includes modelling, design validation, topological optimization, and numerical analysis. The method includes the generation of the model using reverse engineering of CT scan data and a topology optimization technique which makes the implant lightweight without causing excessive stress concentration. Static structural Finite Element Analysis was conducted to test three different biocompatible materials (Ti6Al4V, stainless steel 316L and CoCr alloys) which are commonly available for metal additive manufacturing. The stresses and conditions in the analysis were that of the human mastication process and all the implant design were tested with the three material types. The Taguchi method was used to determine the optimum design which was found to result in the highest mass reduction of 25% with Ti6Al4V as the implant material.
Read full abstract