Developing reliable, sustainable and resilient infrastructure of high quality and improving the ability of countries to resist and adapt to climate-related disasters and natural disasters have been endorsed by the Inter-Agency Expert Group on Sustainable Development Goals (IAEG-SDGs) as key indicators for monitoring SDGs. Landslides pose a serious threat to vehicle traffic and infrastructure in mountain areas all over the world, so it is urgent and necessary to prevent and control them. However, the traditional rigid protective structure is not conducive to the long-term prevention and control of landslide disasters because of its poor impact resistance, high material consumption and difficult maintenance in the later period. Therefore, this study is aimed at the flexible rockfall barriers with good corrosion resistance, material saving and strong cushioning performance, and proposes a fine numerical model of a ring net. This model is used to simulate the existing experiments, and the simulation results are in good agreement with the experimental data. In addition, the numerical model is also used to study the influence of boundary conditions, rockfall gravity and rockfall impact angle on the energy consumption of the ring net. It is indicated that the fixed constraint of four corners increases the deformability, flexibility and energy dissipation ability of the ring net. Apart from that, the influence of gravity on the energy dissipation of the overall protective structure should not be neglected during the numerical simulation analysis when the diameter of rockfall is large enough. As the impact angle rises, the impact energy of the rockfall on the ring net will experience a gradual decline, and the ring at the lower support ropes will be broken. When the numerical model proposed in this study is used to simulate the dynamic response of flexible rockfall barriers, it can increase the accuracy of data and make the research results more credible. Meanwhile, flexible rockfall barriers are the most popular infrastructure for landslide prevention and control at present, which improves the ability of countries to resist natural disasters to some extent. Therefore, the research results provide technical support for the better development and application of flexible rockfall barriers in landslide disasters prevention and control, and also provide an important and optional reference for evaluating sustainable development goals (SDGs) globally and regionally according to specific application goals.