Creating structure defects in ceria-based solid solution catalysts is a crucial yet challenging task. Herein, urea-assisted synthesis strategy was designed for ceria-zirconia-praseodymia catalyst (CeZrPrOx) to create lattice defects; its effects on catalyst structure, physical-chemical properties and catalytic diesel soot purification activity were systematically investigated. Raman and X-ray photoelectron spectroscopy (XPS) findings indicate that the urea-assisted synthesized catalyst (CeZrPrOx-U) has remarkably more Ce3+ proportion (structure defects), oxygen vacancies and surface reactive oxygen species (O22- and O2-). Temperature-programmed reduction by hydrogen (H2-TPR) and temperature-programmed desorption by oxygen (O2-TPD) results further prove that the oxygen migration of the CeZrPrOx-U is definitely enhanced. Compared to the conventional CeZrPrOx catalyst, the bulk lattice oxygen of the CeZrPrOx-U can be migrated to the surface to generate surface reactive oxygen species more easily. As a consequence, the prepared CeZrPrOx-U catalyst exhibits obviously better catalytic diesel soot purification activity. Therefore, this study suggests that engineering the structure defects in CeZrPrOx catalyst is an effective approach to improve physical-chemical properties and enhance the soot catalytic elimination activity of the catalyst.
Read full abstract