Strontium bismuth tantalate (SBT) ferroelectric-gate field-effect transistors (FeFETs) with channel lengths of 85 nm were fabricated by a replacement-gate process. They had metal/ferroelectric/insulator/semiconductor stacked-gate structures of Ir/SBT/HfO2/Si. In the fabrication process, we prepared dummy-gate transistor patterns and then replaced the dummy substances with an SBT precursor. After forming Ir gate electrodes on the SBT, the whole gate stacks were annealed for SBT crystallization. Nonvolatility was confirmed by long stable data retention measured for 105 s. High erase-and-program endurance of the FeFETs was demonstrated for up to 109 cycles. By the new process proposed in this work, SBT-FeFETs acquire good channel-area scalability in geometry along with lithography ability.
Read full abstract