The rapid growth of urbanization significantly influences local atmospheric conditions and life quality of residents living in urban areas by creating a localized phenomenon known as an urban heat island. Urban heat island characteristics are strongly formed by prevailing atmospheric conditions influencing their magnitude and intensity. In this study, we used the Weather Research and Forecasting model to investigate the effects of different airmass and windspeed characteristics on the diurnal cycle of the urban heat island phenomenon during four real weather situations presenting typical scenarios with clear sky conditions. The scenarios consisted of warm dynamic and non-dynamic situations and cold dynamic and non-dynamic situations identified with respect to temperature profiles, humidity and wind speed. The comparison of urban heat island intensity between all four scenarios showed a significant effect of wind speed on urban heat island characteristics and intensity as well as the role of humidity and airmass temperature in diurnal changes. The results showed that urban heat island is best defined by conditions with strong radiative heating and weak wind speed regardless of temperature. Air humidity appears to have significant influence on UHII with cold non-dynamic situations in dry air showing a very high UHII amplitude during the daylight period and high intensity during the night. The comparison of warm and cold dynamics situations showed the influence of vertical heat exchange with strong mixing of air between near-surface levels and lower levels of the troposphere with a mild effect on UHII during the warm situation and strong influence on decreasing UHII during the cold scenario.
Read full abstract