Abstract

The improvement of optical and optoelectronic properties of the individual poly [2-methoxy-5- (2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), poly[2-methoxy-5-(3,7-dimethyl-octyloxy)-1,4-phenylenevinylene]–End capped with Dimethyl phenyl (OC1C10–PPV–DMP), and poly (9,9′-di- n -octylfluorenyl-2,7-diyl) (F8) was revealed by blending them in ternary hybrid with optimal ratio (F8/2 wt.% MEH-PPV/2 wt.% OC1C10–PPV–DMP). All individual and optimal ternary solutions were prepared via the solution-blending method followed by depositing them onto glass and ITO substrates using spin-coating technique. The semi-crystalline phase of the ternary hybrid and the strong mixing between the conjugated polymers were evidenced by observing the X-ray diffraction patterns that related to F8 into the hybrid diffractogram. The optical and optoelectronic properties of all prepared thin films were investigated in terms of absorption and emission spectra, Commission International d′Eclairage (CIE) coordinates, and current–voltage (I-V) characterizations. Emission peaks at the entire range of visible spectrum can be revealed from the ternary hybrid of the three individual conjugated polymers, producing white emission as evidenced from the emission spectrum and CIE coordinates of the hybrid. Among all fabricated organic light-emitting diodes (OLEDs) devices, the ternary hybrid-based-OLED revealed the best performance in terms of current and turn-on voltage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.