Coupling CFD and DEM is commonly used to study particle-fluid flow in sand retention systems for oil and gas wells, addressing the limitations of laboratory experiments and reliance on empirical data. These numerical studies aid in optimising standalone sand screens, which are favoured over gravel-pack completions for cost-effectiveness. However, such studies overlook the critical role of the bulk filter-bed in retaining permeability for both particulate and fluid phases. This paper presents a robust numerical methodology using resolved CFD-DEM to model a sand retention system that accurately captures filter-bed permeability, which has a greater impact on sand production and retained fluid productivity than the screen itself from a long-term perspective. The numerical model's accuracy is validated through a novel experimental methodology, which involves benchmarking the numerically derived porosity and single-phase permeability against micro-CT imaging of the filter-bed. Results show strong consistency between the numerical model and micro-CT imaging of the laboratory-derived filter-bed. This validated model provides a solid foundation for running more accurate sand retention tests and improving standalone sand screen selection criteria. Future work will explore the effects of varying parameters on the filter-bed formation to determine optimal conditions for maximising sand retention while maintaining hydrocarbon productivity from a long-term perspective.
Read full abstract