In conventional marine seismic surveys, due to the time-delayed reflections from the sea surface on both source and receiver sides, ghosts present in recorded seismograms and lead to both phase and spectrum distortions (especially near certain frequency notches). To achieve a high-quality broad-band image/velocity model with conventional reverse time migration (RTM)/full waveform inversion (FWI) that adopts a synthetic zero-phase source wavelet and absorbing surface condition during wavefield modelling, marine seismic data have to be pre-processed to remove ghost effects. However, seismic deghosting is not a trivial task. Instead of employing an external deghosting process, we propose a strategy to compensate for ghost effects during FWI and RTM, which consists of two parts: first, to address phase distortions due to ghost effects by means of obtaining an accurate source wavelet estimation and adopting an appropriate surface boundary condition in both forward and backward wave propagation to appropriately generate ghosts; secondly, to build a compensation operator in the adjoint state computation to mitigate spectrum distortions caused by dominant ghost effects. To demonstrate the success and robustness of the proposed strategy, we present both synthetic experiments and field examples, which suggest that this strategy can lead to successful applications of FWI/RTM directly on marine seismic data without an extra deghosting process.
Read full abstract