We prove the existence of steady space quasi-periodic stream functions, solutions for the Euler equation in a vorticity-stream function formulation in the two dimensional channel R×[-1,1]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathbb {R}}}\ imes [-1,1]$$\\end{document}. These solutions bifurcate from a prescribed shear equilibrium near the Couette flow, whose profile induces finitely many modes of oscillations in the horizontal direction for the linearized problem. Using a Nash–Moser implicit function iterative scheme, near such equilibrium we construct small amplitude, space reversible stream functions, slightly deforming the linear solutions and retaining the horizontal quasi-periodic structure. These solutions exist for most values of the parameters characterizing the shear equilibrium. As a by-product, the streamlines of the nonlinear flow exhibit Kelvin’s cat eye-like trajectories arising from the finitely many stagnation lines of the shear equilibrium.
Read full abstract