Atmospheric jets are pivotal components of atmospheric circulation, profoundly influencing surface weather patterns and the development of extreme weather events such as storms and cold waves. Accurate detection of the jet stream axis is indispensable for enhancing weather forecasting, monitoring climate change, and mitigating disasters. However, traditional methods for delineating atmospheric jets are plagued by inefficiency, substantial errors, and pronounced subjectivity, limiting their applicability in complex atmospheric scenarios. Current research on semi-supervised methods for extracting atmospheric jets remains scarce, with most approaches dependent on traditional techniques that struggle with stability and generalization. To address these limitations, this study proposes a semi-supervised jet stream axis extraction method leveraging an enhanced U-Net++ model. The approach incorporates improved residual blocks and enhanced attention gate mechanisms, seamlessly integrating these enhanced attention gates into the dense skip connections of U-Net++. Furthermore, it optimizes the consistency learning phase within semi-supervised frameworks, effectively addressing data scarcity challenges while significantly enhancing the precision of jet stream axis detection. Experimental results reveal the following: (1) With only 30% of labeled data, the proposed method achieves a precision exceeding 80% on the test set, surpassing state-of-the-art (SOTA) baselines. Compared to fully supervised U-Net and U-Net++ methods, the precision improves by 17.02% and 9.91%. (2) With labeled data proportions of 10%, 20%, and 30%, the proposed method outperforms the MT semi-supervised method, achieving precision gains of 9.44%, 15.58%, and 19.50%, while surpassing the DCT semi-supervised method with improvements of 10.24%, 16.64%, and 14.15%, respectively. Ablation studies further validate the effectiveness of the proposed method in accurately identifying the jet stream axis. The proposed method exhibits remarkable consistency, stability, and generalization capabilities, producing jet stream axis extractions closely aligned with wind field data.
Read full abstract