Abstract
Changes in the jet stream not only affect the persistence of climate change and the frequency of extreme weather but are also closely related to climate change phenomena such as global warming. The manual way of drawing the jet stream axes in meteorological operations suffers from low efficiency and subjectivity issues. Automatic identification algorithms based on wind field analysis have some shortcomings, such as poor generalization ability, and it is difficult to handle merging and splitting. A semi-supervised learning jet stream axis identification method is proposed combining consistency learning and self-training. First, a segmentation model is trained via semi-supervised learning. In semi-supervised learning, two neural networks with the same structure are initialized with different methods, based on which pseudo-labels are obtained. The high-confidence pseudo-labels are selected by adding perturbation into the feature layer, and the selected pseudo-labels are incorporated into the training set for further self-training. Then, the jet stream narrow regions are segmented via the trained segmentation model. Finally, the jet stream axes are obtained with the skeleton extraction method. This paper uses the semi-supervised jet stream axis identification method to learn features from unlabeled data to achieve a small amount of labeled data to effectively train the model and improve the method’s generalization ability in a small number of labeled cases. Experiments on the jet stream axis dataset show that the identification precision of the presented method on the test set exceeds about 78% for SOTA baselines, and the improved method exhibits better performance compared to the correlation network model and the semi-supervised method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have