The potential contamination, including microbial and mycotoxin infection, may escape from the naked eye, posing great threats to food products. Recently, photodynamic inactivation (PDI)-based technology particular has received particular attention because of their high safety. Herein, food-derived hesperetin (Hst) was innovatively introduced as an esculent photosensitizer, engineering with food-grade TiO2 nanoparticles (NPs) to form an organic-inorganic heterojunction structure. Triggered by visible light, the obtained TiO2/Hst NPs were endowed with efficient photoactivity, achieving higher inhibition of Staphylococcus aureus (antibacterial ratio of 98.3 %). The removal capacities of the TiO2/Hst NPs towards patulin (PAT) reached approximately 17.76 μg mg−1, approximately 2 times higher than TiO2 and Hst. The engineered TiO2/Hst NPs were used as the food surface detergent to achieve the ideal inhibition of Staphylococcus aureus and patulin performance on the surface of perishable strawberries, extending the storage life of strawberries.