Abstract

The potential contamination, including microbial and mycotoxin infection, may escape from the naked eye, posing great threats to food products. Recently, photodynamic inactivation (PDI)-based technology particular has received particular attention because of their high safety. Herein, food-derived hesperetin (Hst) was innovatively introduced as an esculent photosensitizer, engineering with food-grade TiO2 nanoparticles (NPs) to form an organic-inorganic heterojunction structure. Triggered by visible light, the obtained TiO2/Hst NPs were endowed with efficient photoactivity, achieving higher inhibition of Staphylococcus aureus (antibacterial ratio of 98.3 %). The removal capacities of the TiO2/Hst NPs towards patulin (PAT) reached approximately 17.76 μg mg−1, approximately 2 times higher than TiO2 and Hst. The engineered TiO2/Hst NPs were used as the food surface detergent to achieve the ideal inhibition of Staphylococcus aureus and patulin performance on the surface of perishable strawberries, extending the storage life of strawberries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.