A new wild type solventogenic Clostridium bacterium, which could produce a large amount of solvent from a mixture of 70% glucose and 30% xylose, was isolated. Based on 16S rRNA gene analysis, this strain was identified as Clostridium beijerinckii. Batch fermentations with this strain (C. beijerinckii GSC1) resulted in the production of 19.65 g/L total solvents (Acetone-Butanol-Ethanol), which is 31% higher than that with the typical wild type strain Clostridium acetobutylicum ATCC 824. This new strain utilized glucose and xylose simultaneously without genetic modification. The selectivity of GSC1 for butanol was 81.8%, which is much higher than that of C. acetobutylicum ATCC 824 (68.7%). Simple genetic modification was performed to obtain a more improved performance. The acid production in batch fermentation by C. beijerinckii GSC1_R1 (gene-modified strain) was reduced to 2.6 g/L from 6.02 g/L. The solvent productivity of GSC1_R1 in continuous fermentation was 3.6 g/L/h. These results indicate that the newly isolated strain is very promising and applicable for the production of biobutanol from second-generation biomass owing to the superior performance of the wild type strain.
Read full abstract