Glass fiber-reinforced polymer- (GFRP-) packaged optical fiber (OF) sensors are considered a promising engineering-suitable sensor for structural health monitoring. To date, some critical characteristics of the GFRP-packaged OF (GFRP-OF) sensors have not yet been thoroughly studied. This study aimed to systematically characterize the properties of the GFRP-OF sensors. Firstly, we proposed a dimension optimization method for GFRP-OF sensors by strain transfer theory, which is based on a symmetrical three-layered cylindrical model. Then, we experimentally investigated the properties of the GFRP-packaged fiber Bragg grating sensor and GFRP-packaged distributed optical fiber sensor, including their mechanical properties, strain/temperature sensing performance, fatigue resistance, and corrosion resistance. The experimental results showed that the shear bearing capacity of GFRP-OF sensors was more than 120 times larger than that of the other three coated OF sensors, indicating that GFRP dramatically enhanced the robustness of the OF sensor. The GFRP–OF sensors also feature excellent strain and temperature sensing performance with high linearity and repeatability. The results also demonstrated that the GFRP–OF sensors have good fatigue properties with absolute fluctuations of strain sensitivity coefficients throughout the fatigue cycles within 0.02 pm/με; repeatability error did not exceed 0.5%, and nonlinear errors were less than 2%. A case study presented in the last section also illustrates the effectiveness of the GFRP-OF sensor in a field application.
Read full abstract