Abstract
${90}^{\ensuremath{\circ}}$ pinned magnetic domain walls can be observed in thin magnetic layers attached to a ferroelectric substrate. The main stabilization mechanism of the noncollinear magnetic texture is the strain transfer, which is responsible for imprinting of the ferroelectic domains into the uniaxial anisotropy of the ferromagnet. Here, we investigate by means of micromagnetic simulations how the interfacial Dzyaloshinskii-Moriya interaction influences the ${90}^{\ensuremath{\circ}}$ domain-wall structure. It is shown that Dzyaloshinskii-Moriya interaction induces a large out-of-plane magnetization component, strongly dependent on the domain wall type. In particular, it is shown that this out-of-plane magnetization component is crucial for the transport of the in-plane magnetic skyrmions, also known as bimerons, through the magnetic domain walls. Based on the results of micromagnetic simulations, a concept of in-plane magnetic skyrmion valve based on two ${90}^{\ensuremath{\circ}}$ pinned magnetic domain walls is introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.